64 research outputs found

    Deterministic and stochastic descriptions of gene expression dynamics

    Full text link
    A key goal of systems biology is the predictive mathematical description of gene regulatory circuits. Different approaches are used such as deterministic and stochastic models, models that describe cell growth and division explicitly or implicitly etc. Here we consider simple systems of unregulated (constitutive) gene expression and compare different mathematical descriptions systematically to obtain insight into the errors that are introduced by various common approximations such as describing cell growth and division by an effective protein degradation term. In particular, we show that the population average of protein content of a cell exhibits a subtle dependence on the dynamics of growth and division, the specific model for volume growth and the age structure of the population. Nevertheless, the error made by models with implicit cell growth and division is quite small. Furthermore, we compare various models that are partially stochastic to investigate the impact of different sources of (intrinsic) noise. This comparison indicates that different sources of noise (protein synthesis, partitioning in cell division) contribute comparable amounts of noise if protein synthesis is not or only weakly bursty. If protein synthesis is very bursty, the burstiness is the dominant noise source, independent of other details of the model. Finally, we discuss two sources of extrinsic noise: cell-to-cell variations in protein content due to cells being at different stages in the division cycles, which we show to be small (for the protein concentration and, surprisingly, also for the protein copy number per cell) and fluctuations in the growth rate, which can have a significant impact.Comment: 23 pages, 5 figures; Journal of Statistical physics (2012

    A Synthesis Method of Gene Networks Having Cyclic Expression Pattern Sequences by Network Learning

    No full text

    Evolving noisy oscillatory dynamics in genetic regulatory networks

    No full text
    We introduce a genetic programming (GP) approach for evolving genetic networks that demonstrate desired dynamics when simulated as a discrete stochastic process. Our representation of genetic networks is based on a biochemical reaction model including key elements such as transcription, translation and post-translational modifications. The stochastic, reaction-based GP system is similar but not identical with algorithmic chemistries. We evolved genetic networks with noisy oscillatory dynamics. The results show the practicality of evolving particular dynamics in gene regulatory networks when modelled with intrinsic noise

    Bayesian inference of latent causes in gene regulatory dynamics.

    No full text
    In the study of gene regulatory networks, more and more quantitative data becomes available. However, few of the players in such networks are observed, others are latent. Focusing on the inference of multiple such latent causes, we arrive at a blind source separation problem. Under the assumptions of independent sources and Gaussian noise, this condenses to a Bayesian independent component analysis problem with a natural dynamic structure. We here present a method for the inference in networks with linear dynamics, with a straightforward extension to the nonlinear case. The proposed method uses a maximum a posteriori estimate of the latent causes, with additional prior information guaranteeing independence. We illustrate the feasibility of our method on a toy example and compare the results with standard approaches
    • …
    corecore